Writing an NIH Grant

Bill Hay MD
University of Colorado School of Medicine
Perinatal Research Center, F441
13243 East 23rd Avenue
Aurora, CO 80045

bill.hay@ucdenver.edu
Hi, Honey—how’s everything in the world of academia?
What To Apply For?

Pre-doctoral training

Research Training (K08/K23/K12)

Small Research Grant (R03)

Larger Research Grant (R21)

Larger Research Grant (RO1)

Independent Scientist Award (K02)

Mid-career Investigator in Patient-Oriented Research (K24)

Post-doctoral training

Independent Scientist

Research Training (T32/F31)

Research Training (T32,F32)
| **DEPARTMENT OF HEALTH AND HUMAN SERVICES** |
| **PUBLIC HEALTH SERVICE** |
| **GRANT APPLICATION** |

LEAVE BLANK FOR PROPOSED USE ONLY.

<table>
<thead>
<tr>
<th>Type</th>
<th>Area</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Human Group</th>
<th>Formerly</th>
<th>C Chun (Month, Year)</th>
<th>Date Received</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TITLE OF PROJECT (Do not exceed 50 typed characters)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>RESPONSE TO SPECIFIC REQUEST FOR APPLICATION OR PROGRAM ANNOUNCEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE OF GRANT PROGRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>POSITION TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DEPARTMENT, SERVICE, LABORATORY OR EQUIVALENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAJOR SUBDIVISION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TELEPHONE AND FAX (Area Code) • Number and Equipment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HUMAN SUBJECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DATE OF PRELIMINARY REVIEW (Month, Day, Year)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DISTRIBUTED ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. VETERINARY ARRANGEMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>6. PERIOD OF ENTIRE PROPOSED PROJECT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INVENTIONS AND PATENTS (Describe current application only)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME OF APPLICANT ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TYPE OF ORGANIZATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>7. NON-USEFUL INFORMATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>------------------------------</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NAME OF ADMINISTRATIVE OFFICIAL TO BE NOTIFIED IF AWARD IS MADE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>E-MAIL ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. NON-FINANCIAL SUPPORT REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. NON-FINANCIAL SUPPORT REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. ENTITY IDENTIFICATION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. NON-FINANCIAL SUPPORT REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. NON-FINANCIAL SUPPORT REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. NON-FINANCIAL SUPPORT REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. NON-FINANCIAL SUPPORT REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>
Description (Abstract)

WHAT you are going to do, WHY you are going to do it, HOW you are going to do it, and VALUE of doing it.

Always emphasize its IMPACT.

Personnel engaged on project
Detailed Budget for Initial Budget Period

Direct Costs Only

<table>
<thead>
<tr>
<th>Personnel/Program Organization</th>
<th>Role on Project</th>
<th>Type of Project</th>
<th>Effort on Project</th>
<th>Base Salary</th>
<th>Salary Requested</th>
<th>fringe benefits</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>#</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Consultant Costs

Equipment (as shown)

Supplies (itemize by category)

Travel

<table>
<thead>
<tr>
<th>Patient Care Costs</th>
<th>Inpatient</th>
<th>Outpatient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alterations and Improvements (itemize by category)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Expenses (itemize by company)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Subtotal Direct Costs for Initial Budget Period

Consortium Contractual Costs

- **Direct Costs**: $________
- **Indirect Costs**: $________
- **Total**: $________

Total Direct Costs for Initial Budget Period: $________
Budget

Direct Costs

Subsequent Years

<table>
<thead>
<tr>
<th>Budget Category</th>
<th>Initial Budget Period (from page 4)</th>
<th>Additional Years of Support Requested</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel: Salary and fringe benefits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consultant Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Equipment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supplies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Travel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Patient Care Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alterations and Renovations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Expenses</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal Direct Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consortium/Contractual Costs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Direct Costs</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Direct Costs for Entire Proposed Project Period (Item 8a) $

Justification (Use continuation pages if necessary):

From Budget for Initial Period: Describe the specific functions of the personnel, collaborators, and consultants and identify individuals with appointments that are less than full time for a specific period of the year, including VA appointments.

For All Years: Explain and justify purchase of major equipment, unusual supplies requested, patient care costs, alterations and renovations, tuition reimbursements, and other miscellaneous costs.

From Budget for Entire Period: Identify any asterisk (*) on this page and justify any significant increase or decrease in any category over the initial budget period. Describe any change in effort of personnel.

For Competing Continuation Applicants: Justify any significant increases or decreases in any category over the current level of support.
Biographical Sketch

Give the following information for the key personnel and consultants and collaborators. Begin with the principal investigator and program director. Photocopy this page for each person.

<table>
<thead>
<tr>
<th>NAME</th>
<th>POSITION/TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>INSTITUTION AND LOCATION</th>
<th>DEGREE</th>
<th>YEAR CONFERRED</th>
<th>FIELD OF STUDY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RESEARCH AND PROFESSIONAL EXPERIENCE: Continuing with present position list in chronological order, previous employment, experience, and honors. Key personnel include all principal investigators and any other individuals who participate in the scientific development or execution of the project. Key personnel may also include all individuals with equivalent or related professional degrees. In some projects, all individuals whose experience is relevant to the project's objectives may be included. In other projects, only key personnel or key collaborators may be included. Remember to include key collaborators on any federal government policy advisory committees. List in chronological order, title, affiliations, and complete references to all publications during the past three years, and indicate any other publications pertinent to the project. If the total publications in the past three years exceed two pages, select the most pertinent publications. **DO NOT EXCEED TWO PAGES.**
OTHER SUPPORT

Please continue on pages if necessary.

FOLLOW INSTRUCTIONS CAREFULLY. Incomplete, inaccurate, or ambiguous information about OTHER SUPPORT could lead to significant delays in the review and/or possible denial of the application. If there are changes in this information after submission, notify the scientific review administrator at the contact review group listed above as changes occur after the review. Notify the administrative officer.

OTHER SUPPORT is defined as all funds received by the proposed project, whether Federal, State, Institutional, or used in the principal investigator program directed (and other key personnel involved) in the application in direct support of this project (as defined through regular grants, contracts, fellowships, stipends, and other means). However, in the case of grants, fellowships, stipends, and other means, only those that support the specific project must be reported. Key personnel are defined as all individuals who participate in the scientific development of the project. Key personnel typically will include all individuals with an active or other professional interest in the scientific development or execution of the project. Reporting requirements may be modified by the key personnel's activity. If all or none of the support is reported, the application or proposal will not be reviewed.

a. Name ____________________
 a. Primary investigator
 b. Total amount requested
 c. Dates and costs at current status
 d. Other sources of support
 a. Specific amount
 b. Other sources of support

 g. Describe program or project and indicate if project is limited budget

 h. Describe program or project and indicate if project is limited budget

 i. Describe program or project and indicate if project is limited budget

 j. Describe program or project and indicate if project is limited budget

 k. Describe program or project and indicate if project is limited budget

 l. Describe program or project and indicate if project is limited budget

 m. Describe program or project and indicate if project is limited budget

 n. Describe program or project and indicate if project is limited budget

 o. Describe program or project and indicate if project is limited budget

 p. Describe program or project and indicate if project is limited budget

 q. Describe program or project and indicate if project is limited budget

 r. Describe program or project and indicate if project is limited budget

 s. Describe program or project and indicate if project is limited budget

 t. Describe program or project and indicate if project is limited budget

 u. Describe program or project and indicate if project is limited budget

 v. Describe program or project and indicate if project is limited budget

 w. Describe program or project and indicate if project is limited budget

 x. Describe program or project and indicate if project is limited budget

 y. Describe program or project and indicate if project is limited budget

 z. Describe program or project and indicate if project is limited budget

 [Continue on page(s) if necessary]
Resources and Environment

Facilities: Mark the facilities to be used at each performance site listed in item B. Page 2, and briefly indicate their capacities, pertinent capabilities, relative proximity, and periods of availability to the project. Use “Other” to indicate any other facilities not listed in item B on the last page and refer to the workforce's contribution to success. Include an explanation of any arrangements or contractual arrangements with the organizations.

- Laboratory
- Clinical
- Animal
- Computer
- Other: ___

Major Equipment: List the most important equipment deemed available for the project, noting the location and pertinent capabilities of each.

- Equipment 1: Description
- Equipment 2: Description

Additional Information: Provide any other information pertaining to the environment for the project, identify support services such as consultant, subcontractual, machinery, shop, and electronic shop, and the extent to which they will be available to the project.
Writing an NIH Grant

- Face Page ✓
- Description ✓
- Budget ✓
- Biographical Sketch ✓
- Other Support ✓
- Resources and Environment ✓

Research Plan

- Checklist and Assurances
Writing a Grant: Start Early!!

- **Receipt Dates:**
 - New (K, R, P, P revision)- 2/1, 6/1, 10/1
 - Revisions (K, R)- 3/1, 7/1, 11/1
 - NRSA (F31-5/1, 11/1; F32- 4/1, 8/1, 12/1; T32- 5/1)
 - SBIR/STTR (R43, R44/R41, R42)- 4/1, 8/1, 12/1

- **Review:** 5-6 months later

- **Council:** 3-4 months

- **Award:** 1-2 months

- **Total time until award:** 9-10 months--thus, start preparing for a grant application at least a year in advance of when you think you will need the money.
Essentials for Grant Proposals

1. Title & Abstract—the idea, what will be done, why, how, and long term value (goal)
2. Hypotheses and Specific Aims (what)
3. Background and Significance (why, or Rationale)
4. Convincing preliminary data; expertise of the investigator and collaborators
5. Methods (how)
6. Statistical design
7. Summary, including long term value (goal)
Writing a Grant: General Principles

1. The reviewer evaluating your application is a human being.
2. The reviewer will have several applications to evaluate.
3. To help the reviewer objectively evaluate your application, the following points are crucial:

Organization: Outline first, write second

Clarity: Appropriate syntax, clear and lucid style
- Short sentences (active voice helps)
- Use Figures to emphasize the important points
- Be concise (don’t even think about exceeding page limitations)

Assistance:
- Have others read it (expert and non-expert)
• **Start fresh!** Don't use applications that were rejected.
• Finish early and ask your colleagues to **review** it.
• Tell reviewers the **ultimate utility** of your research - even if it's years down the road.
• Use **specific examples** of how it will be important, not just that it will be important.
• Pay attention to **new criteria**. Use the word “**impact**” as needed.
• Don't use any words you don't absolutely need. You have only **12 pages**.
Writing a Grant: Getting Started

The absolute requirement for a grant is a good idea.

Hypotheses or questions or models formulated from this idea must be:

Clear, testable, answerable, verifiable (consult with a statistician)

Of limited scope (i.e., can be completed in a 3-5 year period)

Important, not just interesting

New, unique, extend knowledge, solve an important problem, fill in an essential missing link, predict/generalize to future similar situations.

Focus the research on

better understanding of how mechanisms control a key biological process;

better disease recognition, prevention, or treatment.
Observation, Hypothesis, Question, Model—what should you use?

Study Sections prefer Inductive Reasoning.

They want you to have some preliminary data and a review of the literature to provide a rationale for what you want to do. They do not want to fund you to “go looking” (observe, characterize, describe, and so forth).

“From this preliminary data in our lab and information in the literature, we—
1. will test the following hypothesis (is it not true less than 5% of the time?);
2. answer the following question (how does something work?);
3. prove the generalizability of this model (predicts that the same mechanism or model will behave in the same way in the future).
Observation, Hypothesis, Question, Model—what should you use?

This bottoms up approach prevents preconceived notions, including dogma, from determining an outcome without a rational basis. Emphasizes DISCOVERY (“See, that’s how it works!”) over VERIFICATION (“See, I was correct!”).

Experiments will allow the scientist to make claims as to how things work, based on the process of refining a model (testing a hypothesis, answering a question, showing that a model predicts how something works >95% of the time) by the systematic, controlled (unbiased) gathering of repeatable data consisting of negatives and affirmatives.

“The relation between a thing [mechanism] and the rule that controls that thing [how the mechanism works] may be shown to be nonseparable by experience [experimentation].”

(Bertrand Russell, 1912)
Observation, Hypothesis, Question, Model—what should you use?

If you don’t have much preliminary data—the “idea” you have really is new—how do you frame the first experiment before sufficient data are gathered to produce a model and request funds to test it?

Ask a Question!

You are in a state of ignorance. The question is used as a basis to accumulate new data. From the data one then builds a model, which can be subjected to tests (experiments—gathering “affirmatives” and “negatives” to refine the model) for its inductive ability—the capacity to predict the future.

Substitutes the Question for settings where experiments are performed before sufficient data exist and the “model” for situations where the scientist is working with sufficient data to produce a construct than can be tested for inductive power. (Glass, 2008)
Observation, Hypothesis, Question, Model—what should you use?

True for both biological and clinical research—

Gain a sufficiently large data set that is representative of the variations observed in the lab or the clinic (“in nature”).

Achieve this by demonstrating the reproducibility of the data by experimentation.

Pose a straightforward question of a system and then receive an answer (by experimentation); use that answer to model reality; and then test the reproducibility and predictive power of the model, modifying it as necessary (more experiments and more data) to be sure “probably” (>95% of the time) that the model accurately predicts reality. (Glass DJ, Hall N. A brief history of the hypothesis. Cell 2008; 134: 378-381)
Current Research Plan (Section 5.5)
- Introduction to Application (Resubmission or Revision Applications only)
- Specific Aims
- Background and Significance
- Preliminary Studies/Progress Report
- Research Design and Methods

Restructured Research Plan (Section 5.5)
- Introduction to Application (Resubmission or Revision Applications only)
- Specific Aims
- Research Strategy
- Significance
- Innovation
- Approach (methods)
- Preliminary Studies for New Applications
- Progress Report for Renewal/Revision Applications
Specific Aims

The Methods Section begins with a brief (no more than one page) statement of the Specific Aims of the research.

The objectives of the Specific Aims page are to:

- Generate interest
- Demonstrate importance
- Give a concise overview of the Research
Specific Aims

1. More than two or three Specific Aims usually are too many.

2. Each Aim should be stated in one simple sentence, saying as directly as possible what will be done.

3. Each Aim either should be, or include, a hypothesis to be tested or a question to be answered or a model to be tested for predictability.

4. A brief statement of the purpose, rationale (including significance, impact, and innovation), and methodological approach for each Aim is useful.
For each Specific Aim, state the--

Expected Outcomes
What your experiments will tell you, and why that outcome is particularly important to obtain.

Potential Problems and Alternative Strategies
Show an awareness of the problems that may arise, and of the alternative approaches that can be used if the problems do indeed occur.

Timelines
Use a chart to illustrate when specific experiments will start and finish.
Research Strategy (Background, Rationale)

Not just a literature review (although this must be included). Provides the rationale for what you propose to do.

Significance

Puts your proposed research in perspective---what it will do and the importance of the results.

How, if the aims of the application are achieved, scientific knowledge will be advanced.

What the effect of these studies will be on the concepts or methods that drive this field.

Innovation

How the project employs novel concepts, approaches, or methods.

How the project challenges existing paradigms or develops new methodologies or technologies.
Approach (Methods)

Your Experiments.
The main part of the grant!

Repeat each specific aim (and hypothesis).

Then the model or general approach.

Then the specific experiments.
Approach (Methods)

Experiments

- Emphasize the essential experiments
- Refer to literature for established methods
- Identify new methods and their value and proof that they work

Statistical design and analyses

- How will data be interpreted?
- Pitfalls, and how they will be handled
- Alternatives (if the primary approach fails)
Preliminary Data

Demonstrates feasibility. Can it be done? Can you do it? Will the results be accurate? Are your methods state-of-the-art? Will the hypotheses probably be supported? Prove that assays and other technical methods in your lab are in working order.

Balance between preliminary data that show feasibility and likelihood of success vs. proof of hypothesis which guarantees success and definitive conclusion

Too much prior proof - no reason to fund - it’s done; just filling in “n”
Not enough prior proof - too risky; too unlikely to succeed
Summary of Progress Report

What will be learned?

How will the results support the hypotheses (answer the question, test predictability of the model) and meet the specific aims and goals?

How will the results be new and important?

Gaps in our knowledge that this project will fill:

“These studies will determine the fundamental mechanisms responsible for producing cardiorespiratory rhythms that originate in the medulla.”

Why this is important (essential) to do:

“These studies will identify which receptors and processes are probably altered in diseases of the cardiorespiratory system such as SIDS, allowing novel, specific, more effective therapy.”
Animal Care and Use / Human Subjects

Follow the guidelines in the application exactly

Do not assume that your IACUC or IRB protocol is sufficient.

Document that this work has not been done before, that it does require an animal model or a human subject and why, and that all possible non-animal or non-human alternatives have been considered and shown to be insufficient to solve the problem(s) that the research addresses.

Above all, show that all possible discomfort of any kind to the animal or the human subject is known, anticipated, and prevented or minimized.
Timeline:
What will be done when

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Year 1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Developmental changes in placental glucose and amino acid metabolism</td>
<td>20</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Effect of glucose and amino acid supply on placental amino acid</td>
<td>5</td>
<td>10</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>metabolism</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total # of animals

<table>
<thead>
<tr>
<th></th>
<th>25</th>
<th>25</th>
<th>25</th>
<th>25</th>
<th>25</th>
<th>25</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>
Budget Justification: Prescribed

All Training Grants
T32, F31/32, KO8, K23, K12

- salary (usually for 75% time)
- lab support (usually limited, e.g. $25K)
- travel (limited, e.g., $1,500)
- F & A (“Indirects”; limited, e.g., 8%)
Budget Justification: Modular

$25,000/module up to $250,000 (10 modules)

Explain and justify roles of investigators

Rationale for highly expensive
Budget Justification: Itemized

Direct costs > $250,000

Explain and justify each and every item in the budget.

Personnel: name, degree, title, role--justify by specific expertise and what they exactly will do and why the allotted time is essential.

Equipment: Rationale and evidence for cost and need for expensive, unusual, or absolutely essential items (“convenience” or “efficiency” are not sufficient justifications); show cost-sharing if available.

Supplies: As close to “line item” as possible; provide historical and current use and prices; explain per experiment, pre subject, per animal, per year; charts and tables are helpful; include local special or exceptional requirements.

Travel: $1,500 per year for PI is customary, to attend scientific meeting to present results of research

Other: Do not over inflate costs of communications, publications, etc.

Consortium, Contract, and Consultant costs: get these done well ahead of grant due date; the should accomplish a specific task that you clearly show to be essential.
Budget Justification: Just in Time

- Detailed budget not required—details (how much money you will get) will be worked out by the Institute after funding approved and Institute budget and spending priorities determined

- IRB and IACUC approvals can wait for approval of funding
Writer’s Block
(“Block Island”)
Even if you are on the right track, you’ll get run over if you just sit there.

Will Rogers
Good Editing—The Most Essential Aspect of Good Writing

• Why? Because bad editing preserves bad writing, which leads to misunderstanding, and all too often to confused and therefore sometimes hostile (or stupefied) reviewers.

• For example, you do not want these in your grant—

• “…causes of which include, but are not limited to, maternal malnutrition, maternal hypertension, and idiopathic placental insufficiency.”

• “These fetuses are at increased risk of hypoglycemia, hypoxia, and academia, as well as spontaneous preterm delivery…”
Good Editing—Over and Over Again

“... everything you do you have to do again, and your capacity for rewriting is the only thing that separates you from people who do things in a hurry.”

John Irving

We are what we repeatedly do; Excellence, then, is not an act, But a habit.

Aristotle
<table>
<thead>
<tr>
<th>Words NOT to use</th>
<th>Words OK to use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Describe</td>
<td>Test</td>
</tr>
<tr>
<td>Evaluate</td>
<td>Define</td>
</tr>
<tr>
<td>Characterize</td>
<td>Determine</td>
</tr>
<tr>
<td>Look at</td>
<td>Measure</td>
</tr>
<tr>
<td>Check</td>
<td>Quantify</td>
</tr>
<tr>
<td>Estimate</td>
<td>Prove / Disprove</td>
</tr>
<tr>
<td>Correlate</td>
<td></td>
</tr>
<tr>
<td>Study</td>
<td></td>
</tr>
<tr>
<td>Ask / Question</td>
<td></td>
</tr>
<tr>
<td>Compare</td>
<td></td>
</tr>
</tbody>
</table>

And don’t use “alter” or “change”

use “increase” or or “decrease”— or “changed from ... to ...”

Be specific!
Make the Application look good.

“Appearance is everything”

“Clothes maketh the man (or woman).”

Not quite true, but never, ever, ever underestimate the “power of presentation”
water content to hematocrit. Blood \(^{14}\)C-glucose is measured using ion exchange chromatography according to Hay et al.\(^{44}\).

Calculations: Umbilical and uterine blood flow rates are calculated using tritiated water \((^3\text{H}_2\text{O})\) by the transplacental steady state diffusion technique.\(^{28}\)

Net uterine or umbilical uptake rates by the fetus from the placenta of amino acids (including leucine), KIC, glucose, and oxygen are determined by application of the Fick principle:

Uterine or umbilical uptake rate = Uterine or umbilical blood flow (mL/min) \(\times (C_a-C_v)\) or \((C_a-C_v)\)

where \(C_a\) and \(C_v\), and \(C_a\) and \(C_v\), are the concentrations (\(\text{g mol/mL}\)) of the metabolite measured in the Uterine arterial and venous, or umbilical venous and fetal arterial blood, respectively. Similarly, net fluxes of \(^{14}\)C-leucine, \(^{13}\)C-leucine, and \(^{13}\)C-KIC across the umbilical or (Uterine) circulation are measured by the Fick principle as umbilical (or uterine) blood flow times the umbilical (or Uterine) tracer arteriovenous concentration difference.

Tracer fluxes: Maternal plasma leucine disposal rate \(\text{DR}_m\) is calculated as:

\[
\text{DR}_m = \text{Inf} \times \left(\frac{\text{MPE}_{uv} - \text{MPE}_{aa}}{\text{MPE}_{uv}}\right)
\]

where \(\text{Inf}\) is the infusion rate of L-\(^{13}\)C leucine into the mother and \(\text{MPE}_{uv}\) and \(\text{MPE}_{aa}\) are the leucine enrichments in the maternal infusate and maternal arterial plasma, respectively. This equation does not account for the disposal rate of the naturally occurring \(^{13}\)C-labelled leucine which is about 1.1% of the \(^{13}\)C-leucine.\(^{48,49}\) This equation assumes 100% enrichment of the infused isotope. Plasma \([^{13}\text{C}\text{ leucine}]\) is calculated as the product of the leucine concentration and the molar percent excess for \(^{13}\)C leucine in each vessel.

Tracer fluxes between the placenta and the fetal plasma, and between the fetal plasma and fetal tissues, are calculated according to Carver, et al.,\(^{43}\) Loy, et al.,\(^{45}\) and Ross, et al.\(^{43}\)

The fraction of fetal leucine tracer infusion taken up by the placenta \(\left(^{15}\text{N}\text{ urea}\right)\) is calculated as:

\[
\left(\frac{^{15}\text{N}_{\text{urea}}}{\text{Inf}}\right) = \left(\frac{[^{14}\text{C}\text{ leucine}]_{fr} \times \text{umbilical blood flow}}{[^{14}\text{C}\text{ leucine}]_{inf}}\right)
\]

The fraction of L-\(^{14}\)C leucine infusion rate excreted as \(^{14}\)CO\(_2\) via the umbilical circulation \(\left(^{14}\text{CO}_2\right)_{fr}\) is calculated as:

\[
\left(\frac{^{14}\text{CO}_2}{\text{inf}}\right) = \left(\frac{[^{14}\text{CO}_2]_{fr} \times \text{umbilical blood flow}}{[^{14}\text{C}\text{ leucine}]_{inf}}\right)
\]

The net \(^{14}\)CO\(_2\) flux from the fetus to the placenta is calculated as:

\[
^{14}\text{CO}_2\text{ dpm/min} = \text{umbilical blood flow} \times \left([^{14}\text{CO}_2]_{fr} - [^{14}\text{CO}_2]_{ay}\right)
\]

where \([^{14}\text{CO}_2]_{fr}\) and \([^{14}\text{CO}_2]_{ay}\) are the concentrations of \(^{14}\)CO\(_2\) (dpm/mL) in the umbilical arterial and venous blood, respectively.

Tracer model: The model (Carver, et al., Appen. II. Pub. Man. 8) is adapted from Loy, et al.,\(^{45}\) van Veen, et al.,\(^{44}\) and Ross, et al.\(^{43}\) In steady state, the fetal plasma leucine pool is constant in amount, balanced by equal rates of entry (from placenta and fetal tissues) and disposal (into placenta and into fetal tissues). These fluxes of leucine into and out of the fetal plasma, fetal tissues, and the placenta, which apply to the two tracers as well, are shown in the figures below; each flux is labelled with a Roman numeral after Carver, et al.\(^{5}\)
water content to hematocrit. Blood \(^{14}C\)-glucose is measured using ion exchange chromatography according to Hay et al.\(^4\).

Calculations: Umbilical and uterine blood flow rates are calculated using tritiated water \((^{3}H_{2}O)\) by the transluminal steady state diffusion technique.\(^9\)

Net uterine or umbilical uptake rates by the fetus from the placenta of amino acids (including leucine), KIC, glucose, and oxygen are determined by application of the Fick principle:

\[
\text{Uterine or umbilical uptake rate} = \frac{\text{Uterine or umbilical blood flow (mL/min) x (C}_{\text{a}-\text{c}_{\text{b}})\text{ or (C}_{\text{b}-\text{a}_{\text{c}})}}}{\text{where } C_{\text{a}}\text{ and } C_{\text{c}}\text{, and } C_{\text{b}}\text{ and } C_{\text{a}}\text{, are the concentrations (mmol/L) of the metabolite measured in the Uterine arterial and venous, or umbilical venous and fetal arterial blood, respectively. Similarly, net fluxes of } ^{14}C\text{-leucine, } ^{14}C\text{-KIC, and } ^{14}C\text{-KIC across the umbilical (or Uterine) circulation are measured by the Fick principle as umbilical (or uterine) blood flow times the umbilical (or Uterine) tracer arteriovenous concentration difference.}}
\]

Tracer fluxes: Maternal plasma leucine disposal rate (DR\(_{\text{M}}\)) is calculated as:

\[
\text{DR}_{\text{M}} = \text{Inf} \times (\text{MPE}_{\text{M}} - \text{MPE}_{\text{L}})\]

where Inf is the infusion rate of L-[\(^{1-14}C\text{-leucine into the mother}\text{ and } \text{MPE}_{\text{M}}\text{ and } \text{MPE}_{\text{L}}\text{ are the leucine enrichments in the maternal infusate and maternal arterial plasma, respectively. This equation does not account for the disposal rate of the naturally occurring } ^{1}C\text{-leucine which is about 1.1% of the } ^{14}C\text{-leucine.}\text{ This equation assumes 100% enrichment of the infused isotope. Plasma } ^{12}C\text{-leucine is calculated as the product of the leucine concentration and the molar percent excess for } ^{14}C\text{ leucine in each vessel.}}
\]

Tracer fluxes between the placenta and the fetal plasma, and between the fetal plasma and fetal tissues, are calculated according to Carver, et al.,\(^9\) Loy, et al.,\(^4\) and Ross, et al.\(^4\)

The fraction of fetal leucine tracer infusion taken up by the placenta (\(^{14}C_{\text{f}}\)) is calculated as:

\[
\text{\(^{14}C_{\text{f}}\) in the umbilical blood flow} = \text{[(1-14C leucine) \times umbilical blood flow] / [1-14C leucine infusion rate].}
\]

The fraction of L-[\(^{14}C\text{-leucine rate excreted as } ^{14}CO_{2} \text{ via the umbilical circulation (\(^{14}CO_{2}\))} \text{ is calculated as:}

\[
\text{\(^{14}CO_{2}\) in the umbilical blood flow} = \text{[(14CO\text{ in the umbilical blood flow)] / [1-14C leucine infusion rate].}
\]

The not \(^{14}CO_{2}\) flux from the fetus to the placenta is calculated as:

\[
\text{\(^{14}CO_{2}\text{, dpm/min} = umbilical blood flow} \times (\text{\(^{14}CO_{2}\text{, arterial} - \text{\(^{14}CO_{2}\text{, venous}}))\}
\]

where \([\text{\(^{14}CO_{2}\text{, arterial}}\] and \([\text{\(^{14}CO_{2}\text{, venous}}\] are the concentrations of \(^{14}CO_{2}\) (dpm/mL) in the umbilical arterial and venous blood, respectively.

Tracer model: The model (Carver, et al., Appen. II, Pub. Man. B) is adapted from Loy, et al.,\(^4\) van Veen, et al.,\(^24\) and Ross, et al.\(^4\) In steady state, the fetal plasma leucine pool is constant in amount, balanced by equal rates of entry (from placenta and fetal tissues) and disposal (into placenta and into fetal tissues). These fluxes of leucine into and out of the fetal plasma, fetal...
uptake and utilization; an increase in the placental/fetal glucose utilization rate ratio, fetal hypoinsulinemia, and decreased placental and fetal growth (Appendix Pub. 3).

4. Fetal amino acid metabolism: We have published before on our methods for measuring maternal and fetal amino acid concentrations and the transfer of amino acids into the fetus (42,43), including details about how to measure fetal amino acid metabolism for several amino acids, and for glucose (11,38,46). These studies have been modified recently for leucine (see details below, in Methods, and Appendix, Pub. Man. 8) and for glutamine, and glutamate (47); more recent pilot studies with arginine are reviewed below.

5. Leucine metabolism model: Leucine metabolism in the chronically (6 weeks) hypoglycemic/hypoinsulinemic sheep model, produced by infusing insulin into the mother, was studied by infusing 19-C and 6-19-C leucine tracers into the fetus. In contrast to acute increased leucine oxidation with short term hypoglycemia (42), long term hypoglycemia produced an adaptation of lower energy expenditure for protein accretion and thus a slower rate of growth in the fetus, allowing the fetus to maintain normal weight-specific rates of nitrogen uptake as amino acids, oxygen consumption, fetal plasma leucine disposal rate, and leucine incorporation into protein synthesis. The umbilical uptakes of some amino acids, particularly leucine, were decreased; leucine consumption by the utero-placenta was increased. The decreased umbilical leucine uptake and decreased leucine incorporation into protein accretion in these fetuses were accounted for by increased leucine release from fetal protein breakdown. These studies demonstrated important mechanisms by which chronic glucose deprivation regulates placental and fetal amino acid metabolism and fetal growth, and define new tracer approaches to quantifying placental and fetal leucine metabolism (Appendix II, Pub. Man. 8).

6. Maternal glucose tracer metabolism by the placenta: We conducted the first ever studies of the fate of maternal glucose carbon, traced as [U-14C]glucose infused into the maternal circulation, taken up and metabolized by the placenta and/or transported to the fetus. As shown in the figures below, the fraction of glucose 14C showing up on amino acids was small and was not affected by short or long-term hyperglycemia, whereas chronic insulin deprivation increased the fraction of glucose carbon that was converted to CO2, both in the fetus and in the placenta.

7. Placental metabolism: We also measured with [U-14C]glucose net uteroplacental glucose consumption rate (UPGCl), lactate and fructose production rates, and glucose oxidation in late gestation pregnant sheep after 18 hours each of low and high maternal and fetal glucose concentrations. A major fraction of UPGC production was due to non-oxidative metabolism. UPGC oxygen consumption was not affected. UPGC lactate production was a major product of UPGC (59% during low glucose, 53% during high glucose); UPGC fructose production was 5% under low and 3% under high glucose, and tracer-derived umbilical vein lactate uptake from the placenta was accounted for completely by net fetal lactate uptake from the placenta, i.e., there was no substrate source of UPGC lactate production into the fetus other than UPGC (Appendix Abs. 4).

8. Maternal low protein diet: Although we have had considerable experience manipulating maternal diet (fasted states, several weeks periods of glucose and insulin clamps), for the specific purpose of developing a low protein diet in the mother that will lead to reductions in maternal amino acid concentrations, we have engaged the assistance of Dr. Alan Bell (Cornell Univ.), an expert in maternal and fetal effects of maternal dietary changes who has developed and studied maternal low protein diets in pregnant sheep that have produced fetal growth restriction (Appendix IV). Dr. Bell will help to determine the necessary diet formulation to produce an energy complete, low protein diet (see Methods).

9. Leucine infusion into normal and growth restricted fetuses or their mothers. Leucine infusion into ewes with placental insufficiency showed markedly increased uterine leucine uptake but only slight increase in fetal leucine uptake. Leucine infusion into normal fetuses produced increased leucine oxidation (accounting for increased disposal) and decreased umbilical leucine uptake. Other amino acids were affected by this infusion. Thus, although the placenta actively transports amino acids from the maternal to the fetal circulation, such transport can be affected by the relative maternal and fetal amino acid concentrations.
We also have engaged the assistance of Dr. Alan Bell and his doctoral student, Richard Ehrhardt, to measure GLUT-3 and GLUT-1 mRNA using their ovine-specific cDNA probes. They have nearly completed development of ovine-specific GLUT-3 and GLUT-1 antibodies that will allow us to measure protein abundances for more direct correlation with glucose uptake and transport studies in vivo. Data below show a relative increase in GLUT-3 vs 1 mRNA (left) over the second half of gestation, with a corresponding decrease in the fraction of total cytoplasmic binding capacity (representing "functional" protein abundance) accounted for by GLUT-1 (right).

13. Effect of IGF-1 infusion on maternal, placental, and fetal insulin, glucose, and amino acid concentrations. Recombinant human IGF-I from Eli Lilly Co. was infused at constant rate (150 µg/kg/hr) into 5 null-term pregnant sheep, increasing mat. IGF-I 3.2-fold (comparable to Gluckman’s study), decreasing mat. insulin from 23 to 3 μU/ml, and decreasing mat. glucose from 3.7 to 3.2 mEq/l; in balance, maternal glucose turnover, uptake and utilization of glucose by the placenta and fetus, and placental lactate production were not significantly altered. Maternal amino acid concentrations were decreased (* p < 0.05 in table below).

<table>
<thead>
<tr>
<th>Time (days)</th>
<th>Amino Acids 1</th>
<th>Amino Acids 2</th>
<th>Amino Acids 3</th>
<th>Amino Acids 4</th>
<th>Amino Acids 5</th>
<th>Fetal Placenta 1</th>
<th>Fetal Placenta 2</th>
<th>Fetal Placenta 3</th>
<th>Fetal Placenta 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
</tr>
<tr>
<td>5</td>
<td>1.5</td>
<td>2.5</td>
<td>3.5</td>
<td>4.5</td>
<td>5.5</td>
<td>6.5</td>
<td>7.5</td>
<td>8.5</td>
<td>9.5</td>
</tr>
<tr>
<td>10</td>
<td>2.0</td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
<td>6.0</td>
<td>7.0</td>
<td>8.0</td>
<td>9.0</td>
<td>10.0</td>
</tr>
</tbody>
</table>

14. Statistical methods: We have developed unique statistical methods, including two and three dimensional generalized multinomial response surface methods (first et al) and curve fitting methods (You et al). To interpret and develop models from our complex data that involve multiple measurements within an animal at different times, of different parameters that may or may not have separate and/or joint effects, and among groups with different numbers of subjects (Appendix II, Pub. Man. 6.7.1). For the first time, these important advances in statistical modelling will be applied to placental metabolism to address the separate and/or joint effects of substrate supply on selected substrate metabolism in the placenta.
7. Placental metabolism: We also measured with [U-14C]glucose net uteroplacental glucose consumption rate (UPGC), lactate and fructose production rates, and glucose oxidation in late gestation pregnant sheep after 18 hours each of low and high maternal and fetal glucose concentrations. A major fraction of UPGC went to non-oxidative metabolism; UPGC oxidation was not affected UP lactate production was a major product of UPGC (59% during low glucose, 53% during high glucose); UP fructose production was 5% under low and 3% under high glucose, and tracer-derived umbilical vein lactate uptake from the placenta was accounted for completely by net fetal lactate uptake from the placenta, i.e., there was no substrate source of UP lactate production into the fetus other than UPGC (Appendix IV).

8. Maternal low protein diet: Although we have had considerable experience manipulating maternal diet (fasted states, several week periods of glucose and insulin clamps), for the specific purpose of developing a low protein diet in the mother that will lead to reductions in maternal amino acid concentrations, we have engaged the assistance of Dr. Alan Bell (Cornell Univ.), an expert in maternal and fetal effects of maternal dietary changes who has developed and studied maternal low protein diets in pregnant sheep that have produced fetal growth restriction (Appendix IV). Dr. Bell will help in determining the necessary diet formulation to produce an energy complete, low protein diet (see Methods).

9. Leucine infusion into normal and growth restricted fetuses or their mothers. Leucine infusion into ovaries with placental insufficiency showed markedly increased uterine leucine uptake but only slight increase in fetal leucine uptake. Leucine infusion into normal fetuses produced increased leucine oxidation (accounting for increased disposal) and decreased umbilical leucine uptake. Other amino acids were affected by this infusion. Thus, although the placenta actively transports amino acids from the maternal to the fetal circulation, such transport can be affected by the relative maternal and fetal amino acid concentrations.
3. Maternal insulin infusion chronic hypoglycemia model: These studies showed that we can maintain maternal glucose concentrations at different levels over several weeks as well as more acutely (11,41), by glucose/insulin clamp technique, to produce sustained decrease in fetal glucose uptake and utilization, an increase in the placental/toal glucose utilization rate ratio, fetal hypoinsulinemia, and decreased placental and fetal growth (Appen. Pub. 31).

Fig. Stability of maternal and fetal [glucose] and [insulin] over gestation in the maternal hypoglycemia model.

4. Fetal amino acid metabolism: we have published before our methods for measuring maternal and fetal amino acid concentrations and the transfer of amino acids into the fetus (42,43), including details about how to measure fetal amino acid metabolism for several amino acids, and for glucose (11,38,45). These studies have been modified recently for leucine (see details below, in Methods, and Appen., Pub. Man. 8) and for glutamine, and glutamate (11); more recent pilot studies with arginine are reviewed below.

5. Leucine metabolism model: Leucine metabolism in the chronically [6 weeks] hypoglycemic/hypoinsulinemic sheep model, produced by infusing insulin into the mother, was studied by infusing 1-[13]C and 1-[13]C leucine tracers into the fetus. In contrast to acute increased leucine oxidation with short term hypoglycemia (42), long term hypoglycemia produced an adaptation of lower energy expenditure for protein accretion and thus a slower rate of growth in the fetus, allowing the fetus to maintain normal weight-specific rates of nitrogen uptake as amino acids, oxygen consumption, fetal plasma leucine disposal rate, and leucine incorporation into protein synthesis. The umbilical uptakes of some amino acids, particularly leucine, were decreased; leucine consumption by the uteroplacenta was increased. The decreased umbilical leucine uptake and decreased leucine incorporation into protein accretion in these fetuses were accounted for by increased leucine release from fetal protein breakdown. These studies demonstrated important mechanisms by which chronic glucose deprivation regulates placental and fetal amino acid metabolism and fetal growth, and defined new tracer approaches to quantifying placental and fetal leucine metabolism. (Appendix II Pub. Man. 8).

<table>
<thead>
<tr>
<th>Flux rates (mmol/min)</th>
<th>Control</th>
<th>Hypoglycemia</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1-13C] leu fetal plasma disposal rate</td>
<td>8.75±0.9</td>
<td>3.52±0.8</td>
</tr>
<tr>
<td>[1-13C] leu fetal plasma disposal rate</td>
<td>8.51±0.9</td>
<td>2.1±0.4**</td>
</tr>
<tr>
<td>net fetal leucine uptake from placenta</td>
<td>4.2±0.6</td>
<td>3.8±0.3**</td>
</tr>
<tr>
<td>leucine into blood from fetal proteins</td>
<td>2.0±0.1</td>
<td>1.9±0.3</td>
</tr>
<tr>
<td>GO produced by fetus from ket 1-C</td>
<td>2.1±0.1</td>
<td>1.8±0.3 **</td>
</tr>
<tr>
<td>leucine into fetal protein accretion</td>
<td>2.6±0.2</td>
<td>1.8±0.1**</td>
</tr>
<tr>
<td>leucine into fetal protein synthesis</td>
<td>4.6±0.3</td>
<td>4.8±0.2</td>
</tr>
</tbody>
</table>

PHS 398 Rev. 5/9101
Page 47
Number pages consecutively at the bottom throughout the application. Do not use suffixes such as 3a, 3b.
Submit the Grant—Study Section Review

Study sections will continue to give each application a single overall score to reflect “the study section’s notion of what the likely impact of the proposal will be on our understanding of biology and behavior and on the practice of medicine.”

Study sections are supposed to pay more attention to the potential impact of a grant application and less to its feasibility.

“Study Sections and NIH should be looking for the stuff that is truly distinguished.”

And then your grant goes to study section for review of its overall quality and scientific merit.
What you probably think happens at Study Section.

“That’s it? That’s peer review?”
What **really** happens at Study Section: 9-Point Score Chart for NIH Grants

<table>
<thead>
<tr>
<th>Impact</th>
<th>Score</th>
<th>Descriptor</th>
<th>Strengths/Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Impact</td>
<td>1</td>
<td>Exceptional</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Outstanding</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Excellent</td>
<td></td>
</tr>
<tr>
<td>Moderate Impact</td>
<td>4</td>
<td>Very Good</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Good</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>Satisfactory</td>
<td></td>
</tr>
<tr>
<td>Low Impact</td>
<td>7</td>
<td>Fair</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>Marginal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>Poor</td>
<td></td>
</tr>
</tbody>
</table>

Non-numeric score options: NR = Not Recommended for Further Consideration, DF = Deferred, AB = Abstention, CF = Conflict, NP = Not Present, ND = Not Discussed
<table>
<thead>
<tr>
<th>Score</th>
<th>Descriptor</th>
<th>Additional Guidance on Strengths / Weaknesses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Exceptional</td>
<td>Exceptionally strong with essentially no weaknesses</td>
</tr>
<tr>
<td>2</td>
<td>Outstanding</td>
<td>Extremely strong with negligible weaknesses</td>
</tr>
<tr>
<td>3</td>
<td>Excellent</td>
<td>Very strong with only some minor weaknesses</td>
</tr>
<tr>
<td>4</td>
<td>Very Good</td>
<td>Strong but with numerous minor weaknesses</td>
</tr>
<tr>
<td>5</td>
<td>Good</td>
<td>Strong but with at least one moderate weakness</td>
</tr>
<tr>
<td>6</td>
<td>Satisfactory</td>
<td>Some strengths but also some moderate weaknesses</td>
</tr>
<tr>
<td>7</td>
<td>Fair</td>
<td>Some strengths but at least one major weakness</td>
</tr>
<tr>
<td>8</td>
<td>Marginal</td>
<td>A few strengths and a few major weaknesses</td>
</tr>
<tr>
<td>9</td>
<td>Poor</td>
<td>Very few strengths and numerous major weaknesses</td>
</tr>
</tbody>
</table>

Minor Weakness: An easily addressable weakness that does not substantially lessen impact

Moderate Weakness: A weakness that lessens impact

Major Weakness: A weakness that severely limits impact
What happens?

Either —

Your grant scores well and gets funded,

Now get to work, and come back and tell the next group of young investigators how you did it.

Or —

Your grant is not so well scored and does not get funded.

What do you do now?
An understandable but inappropriate form of rebuttal.
Remember, Columbus didn’t get it right the first time either.
And remember the *Accenture*™ line—

What it takes to be successful—

What you did—10%

What you do next—90%
Resubmission

1. **Only more try !!**
2. One page of introduction for response and/or rebuttal.
3. Address exactly each and every concern raised by the review.
4. But--focus response directed at the principal problems.
5. Rebuttal should be well documented to support your position if you disagree with any point in the study section review.
6. Do not expand the grant unless directed to do so.
7. Keep the approved budget, but if you do change, make sure you tie the changes to a specific request of the study section.

8. No grant is perfect; use the revision opportunity to improve yours.

9. Above all, be polite.
Give them what they want.
NIH now requires that your grant application be written in a template fashion that addresses each of the major review criteria.
Criteria that study section reviewers use to determine their enthusiasm for the grant application and their priority score.
Critique Oriented Application

• Write your grant application to specially address the 5 major evaluation criteria used for the critique: Significance, Approach, Innovation, Investigator, Environment, and include a Summary of these for the Abstract and at the end of the Text.

• Put the words you want the reviewer’s critique to contain in your application.

• Document and justify every statement that relates to these evaluation criteria.
1. Significance

- State how this study addresses an important problem.

- State how, if the aims of the application are achieved, scientific knowledge will be advanced.

- State what the effect of these studies will be on the concepts or methods that drive this field.
2. Approach

State how the conceptual framework, design, methods, and analyses are adequately developed, well integrated, and appropriate to the aims of the project.

State/Acknowledge (with specific examples) potential problem areas and alternative tactics.
3. Innovation

• State how the project employs novel concepts, approaches or methods.

• State how aims are original and innovative.

• State how the project challenges existing paradigms or develops new methodologies or technologies.
4. Investigator

• State (and document) how the investigator is appropriately trained and well suited to carry out the proposed work.

• State how the proposed research is appropriate to the experience level of the principal investigator and other researchers (if any).
5. Environment

State how the scientific environment in which the work will be done will contribute to the probability of success.

State how the proposed experiments will take advantage of unique features of the scientific environment or employ useful collaborative arrangements.

Show evidence of institutional support.
Critique Oriented Application: Overall Evaluation

• Summary of the important strengths and weaknesses of the application
• Recommended score reflecting the overall impact of the project on the field, weighing the 5 principal criteria as appropriate
• An application does not need to be outstandingly strong in all of the 5 principal areas of evaluation to be judged likely to have a major scientific impact and thus deserve a highly meritorious rating.
Preparing a Grant: COMMON MISTAKES

1. **poorly written**: bad grammar, typographical errors, poor outline, looks sloppy, too many words on a page, too much technical jargon

2. **too much work proposed**

3. not “crystal clear” what you want to do, why, and how

4. **poorly justified**; does not advance knowledge

5. necessary **expertise** is not demonstrated

6. **too expensive**
Preparing a Grant: COMMON SUCCESSES

1. The grant is easy to read

2. The science is “outstanding”

3. Written with evidence of confidence and enthusiasm for the importance and potential success of the proposed research

4. Figures, graphs, tables, charts, flow diagrams are self-explanatory as well as related to the text

5. The preliminary data/experience are organized to show how they will make the proposed experiments work successfully

6. The budget is accurately and thoroughly justified

7. Descriptive work is acknowledged as such; but the bulk of the research is testable hypotheses
Information

• NICHD WEBSITE: “Funding by NICHD”
 http://www.nichd.nih.gov/funding/funding-mechs.htm

• NIH WEBSITE “Welcome to Extramural Research at the NIH”
 http://grants.nih.gov/grants/welcome.htm

• NIH CAREER AWARD WEBSITE “K Kiosk”
 http://grants.nih.gov/training/careerdevelopmentawards.htm