Dr. Steven J. Ackerman


Biographical Info

  • PhD, McGill University, Montreal
  • Faculty Positions: Harvard Medical School, Harvard University, Boston; Mayo Graduate School of Medicine, Mayo Clinic and Foundation, Rochester
  • Postdoctoral: Mayo Clinic and Foundation, Rochester; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia

Major Interests:
Transcriptional regulation of hematopoietic (myeloid) development and granulocyte (eosinophil) lineage-specific gene expression. Molecular biology, structural biology (structure-function relationships) and biologic activities of eosinophil-derived enzymes (phospholipases, lysophospholipases), granule cationic proteins/cytotoxins, and galectins as mediators of eosinophil effector function in allergic inflammation, tissue damage and disease pathogenesis. Eosinophil effector functions in inflammation, tissue remodeling, and fibrosis in asthma, allergy, and other eosinophil-associated diseases.

Our research interests center on the molecular biology, biochemistry and hematopoietic development of the human eosinophil leukocyte in health and disease pathogenesis. Ongoing research projects focus on the: (1) transcriptional mechanisms that regulate eosinophil development and lineage-specific gene expression in the process of commitment and terminal differentiation of multipotential myeloid progenitors to the eosinophil lineage, (2) molecular biology, biochemistry and biologic actions of granule and cytosolic enzymes and cationic cytotoxins expressed by eosinophils, and their roles in the effector functions of this granulocyte in disease pathogenesis, (3) structural biology (structure-activity relationships) of eosinophil granule-associated cytotoxins and enzyme mediators of inflammation, (4) cytokine regulation and mechanisms of eosinophil terminal differentiation, activation and secretion, including cytokine-activated signal transduction pathways, and (5) the roles of eosinophils and their mediators in normal tissue remodeling and pathological tissue fibrosis.

Recent work has included the cloning, sequencing and characterization of cDNA and genomic clones encoding eosinophil granule-associated proteins, isolation of the regulatory regions (promoters and enhancers) of these eosinophil-specific genes, and functional characterization of the cis-acting DNA elements and transcription factors that regulate their expression during eosinophil development and post-mitotic activation. We are characterizing the regulatory regions of the genes encoding the eosinophil-specific alpha (a) subunit of the IL-5 receptor (IL-5Ra), the eosinophil granule cationic proteins [major basic protein (MBP) and eosinophil peroxidase (EPO)], and the Charcot-Leyden crystal (CLC) protein (Galectin-10). These eosinophil promoters/enhancers are being analyzed as models for the differential regulation of myeloid specific genes in general, and eosinophil specific genes in particular, in the process of the commitment and differentiation of stem cells and multipotential bone marrow-derived progenitors to the granulocyte lineages. Transcription factors thus far shown to regulate eosinophil development and/or gene expression that are under investigation include members of the C/EBP family (a , ß, e and e isoforms), GATA-binding proteins and their co-activators/co-repressors [Friend of GATA (FOGs)], members of the ets family of transcriptional regulators including PU.1 and GA-binding protein (GABP), members of the Egr family, and the RFX family of transcriptional regulators. We are particularly interested in the functional interactions of transcriptional regulators such as the C/EBPs, GATA-binding proteins (GATA-1 and 2) and PU.1 in terms of their interactions (antagonism versus synergy) on target genes in the eosinophil compared to other myeloid lineages, and the enhancer roles of the RFX and RFX-associated proteins in IL-5 receptor expression. As well, we are characterizing novel signal transduction pathways mediated via IL-5/IL-5R signaling in the eosinophil, and the mechanisms that regulate expression of the soluble versus transmembrane isoforms of the receptor.

Our work on eosinophil function focuses primarily on the pro-inflammatory effector roles of eosinophils and their unique granule cationic proteins and lipolytic enzymes in the pathogenesis of asthma, allergic and other eosinophil-associated diseases and hypereosinophilic syndromes. Research on the cytotoxic and inflammatory effector functions of eosinophils includes the expression of recombinant eosinophil proteins (CLC/galectin-10, proMBP and MBP, eosinophil lysophospholipases) and analyses of structure-function relationships for their unique enzymatic and non-enzymatic activities using site-directed mutagenesis and molecular modeling based on crystallographic 3D structure. Additional projects include investigations of the mechanisms for eosinophil activation and secretion of these mediators in response to eosinophil-active cytokines and other physiologic stimuli. Related projects characterizing eosinophil effector mechanisms in the pathophysiology of asthma and other allergic diseases include studies of the mechanisms by which eosinophils induce airways dysfunction, fibroblast and epithelial cell activation, and the production of inflammatory cytokines and other mediators of tissue remodeling and pathological tissue fibrosis in the lung, gastrointestinal tract and other tissues. In this regard, we have recently developed a model of eosinophil-fibroblast interactions in which eosinophil products, including TGFß1 and other soluble mediators, induce fibroblast activation and secretion of fibrogenic cytokines such as IL-6, and the upregulation of genes involved in extracellular matrix homeostasis.


Selected Publications

Park GY, Lee YG, Berdyshev E, Nyenhuis S, Du J, Fu P, Gorshkova IA, Li Y, Chung S, Karpurapu M, Deng J, Ranjan R, Xiao L, Jaffe HA, Corbridge SJ, Kelly EAB, Jarjour NN, Chun J, Prestwich GD, Aidinis V, Morris AJ, Smyth SS, Ackerman SJ, Natarajan V and Christman JW. Autotaxin production of lysophosphatidic acid mediates allergic asthmatic inflammation. (SJA-co-senior author) Amer. J. Respir. Crit. Care Med. 2013; 188(8):928–940 [Sept 19-Epub ahead of print, PMID: 24050723]; October 15, 2013 issue, with editorial (Georas, SN. Amer. J. Respir. Crit. Care Med. 2013;188:889–900) and front cover artwork highlighting the report.

Acharya KR and Ackerman SJ. Eosinophil Granule Proteins: Form and Function Minireview: J. Biol. Chem. 2014; 289(25):17406-17415 (published online May 6, 2014; doi: 10.1074/jbc.R113.546218).

Ackerman, SJ. To be, or not to be, an eosinophil: that is the ??? In: Inside Blood: Phagocytes, Granulocytes, Myelopoiesis.  Blood 2013 Aug 1;122(5):621-3.

Lee YG, Jeong JJ, Nyenhuis S, Berdyshev E, Chung S, Ranjan R, Karpurapu M, Deng J, Qian F, Kelly EA, Jarjour NN, Ackerman SJ, Natarajan V, Christman JW, Park GY. Recruited alveolar macrophages, in response to airway epithelial-derived MCP-1/CCL2, regulate airway inflammation and remodeling in allergic asthma. Amer. J. Respir. Cell and Mol. Biol.:In press. DOI: 10.1165/rcmb.2014-0255OC on October 31, 2014.

Bartels M, Govers AM, Fleskens V, Lourenço AR, Pals CE, Vervoort SJ, van Gent R, Brenkman AB, Bierings MB, Ackerman SJ, van Loosdregt J, Coffer PJ.  Acetylation of C/EBPe is a prerequisite for terminal neutrophil differentiation.  Blood. 2015 Mar 12;125(11):1782-92. doi: 10.1182/blood-2013-12-543850. Epub 2015 Jan 7.


Email: sackerma@uic.edu
Office: 312-996-6149
Lab: 312-996-5433


View Publications on PubMed