T35 Short-Term Research Training Program Summer 2025 List of Mentors/Projects

1
an aging related blood
of numerous chronic
disease, and cognitive
ging, its longitudinal
inderstudied. We have
ic Renal Insufficiency
ney disease who have
. With these data, we
igate the longitudinal
mportant insights into
portant aging-related
tions in adults with
ults with mild to
enal Insufficiency
sleep apnea test
ng and were followed
ethods, this study will
nd hospitalizations
oing hemodialysis
ment vary among
ioeconomic
ogy. Through statistical
ntial barriers to hinterventions to
n experience in
hods evaluation, with
cceptability of VR

#	Mentor	Research Project
4	Santosh Saraf, MD	Develop a liquid biopsy for kidney damage in sickle cell disease
	NIH Mission Area: Hematology	The project that is available for a T35 scholar is to help develop a liquid biopsy for
	Santosh Saraf, MD is an Associate Professor and the Director of the	kidney damage in patients with sickle cell disease. Kidney biopsies are
	Comprehensive Sickle Cell Center in the Division of Hematology &	infrequently performed limiting our ability to directly evaluate molecular changes
	Oncology. He investigates the genetic and molecular mechanisms for	occurring in the kidneys of patients with sickle cell disease. Gene expression
	sickle cell disease-related complications with a particular focus on	changes in urine bio samples may overcome this obstacle and help provide insight
	kidney disease.	into how the kidneys are being damaged. Our lab has isolated mRNA from
		approximately 50 patients with sickle cell disease and quantified the level of
		expression in certain candidate genes. During the summer session, the mentee
		will work closely with the mentor to analyze associations between the candidate
		gene expression and measures of kidney function. The project will allow the
		trainee to develop hands-on skills on how to conduct biostatistical analyses and
		how to interpret findings into pathophysiologic mechanisms for sickle cell-related
-	Waddah A. Alrefai, MD	kidney disease. Investigating Cholesterol Absorption in Alcohol-Associated Liver Disease
5	NIH Mission Area: Gastroenterology	Dietary cholesterol has been identified as an independent risk factor for liver
	Waddah A. Alrefai, MD is a professor in the division of gastroenterology	cirrhosis. However, it remains unclear whether variations in cholesterol
	and hepatology and the director of the physician-scientist	absorption contribute to the development and severity of liver disorders, such as
	development program (PSDP) in the internal medicine residency at the	alcohol-associated liver disease (ALD). Our research aims to explore this question
	Department of Medicine. His research primarily focuses on studying	using cutting-edge click-chemistry-based approaches . As part of this project,
	the regulation of intestinal bile acid and cholesterol absorption,	we will analyze markers of intestinal cholesterol absorption in serum samples
	emphasizing their roles in maintaining cholesterol homeostasis and	from ALD patients with varying disease severity. These studies will provide critical
	contributing to liver diseases.	insights into how cholesterol absorption influences ALD progression and may lead
		to novel therapeutic strategies.
6	Ravinder K. Gill, PhD	Investigating how serotonin triggers oxidative stress in intestinal epithelial
	NIH Mission Area: Gastroenterology	cells and its implications for gut inflammation
	Ravinder K. Gill, PhD, is an Associate Professor in the Division of	
	Gastroenterology and Hepatology. Dr. Gill's research group focuses on	Or
	serotonin signaling and its impact on the intestinal epithelium, gut	
	microbiome, and metabolism in both health and digestive disorders.	Exploring the interplay between serotonin and bile acids in regulating
	Our lab integrates molecular biology, cell culture, and in vivo models	epithelial transport, shedding light on novel therapeutic targets for gut
	to unravel key pathways that contribute to inflammatory and diarrheal	disorders.
1	diseases—offering students a hands-on, immersive research	
	experience.	

#	Mentor	Research Project
7	Cemal Yazici, MD	The association of social vulnerability index with chronic pancreatitis (CP)
	NIH Mission Area: Gastroenterology	and CP-driven outcomes
	Cemal Yazici, MD is Associate Professor in the Division of	In this retrospective study, we aim determine if i) the social vulnerability index (SVI)
	Gastroenterology and Hepatology. Dr. Yazici is studying the	is associated with chronic pancreatitis (CP), ii) minorities with CP have higher SVI
	contribution of diet and microbiome to the severity of acute	compared non-Hispanic whites (NHW), and if iii) SVI is associated with
	pancreatitis. In collaboration with colleagues in the Division of	development of CP-related health outcomes.
	Endocrinology, a main focus of research is the study of risks for and	
	mechanisms of diabetes due to pancreatitis.	
8	Pamela Ann Martyn-Nemeth, PhD, RN, FAHA, FPCN, FAAN	Sleep optimization to improve glycemic control in adults with type 1 diabetes
	NIH Mission Area: Diabetes	(T1D)
	Pamela Ann Martyn-Nemeth, PhD, RN, FAHA, FPCN, FAAN is a Professor in the Department of Biobehavioral Nursing Science in the	The overall goal of my program of research is to reduce cardiovascular disease (CVD) and improve quality of life in persons with type 1 diabetes (T1D). I have
	UIC College of Nursing. Dr. Martyn-Nemeth is studying critical	primarily addressed this through the development of technology-assisted
	behavioral parameters impacting on the quality of life and metabolic	behavioral interventions such as cognitive behavioral therapy with continuous
	health in people with type 1 diabetes, including fear of hypoglycemia,	glucose monitoring to reduce fear of hypoglycemia (FREE) and behavioral sleep
	cardiovascular risk, and sleep quality.	intervention to improve sleep regularity and glucose control (SOPT).
		······································
		Students could get involved in analyzing the data from our sleep study. In
		particular, we will be working on determining if improvement in sleep (regularity or
		duration) is associated with an improvement in mood this summer.
9	Pingwen Xu, PhD	How Western diet and FOS supplementation affect hypothalamic glial cells
	NIH Mission Area: Diabetes	Studies have shown that obesity caused by diet leads to inflammation in the
	Pingwen Xu, PhD is Associate Professor in the Division of	hypothalamus at an early stage. Our research demonstrates that adding dietary
	Endocrinology, Diabetes, and Metabolism. Dr. Xu's research was	fiber, especially Fructooligosaccharides (FOS), helps prevent weight gain and
	focused on the central regulation of energy balance and glucose	reduces hypothalamic inflammation in mice. This suggests a promising link
	homeostasis. His laboratory employs sophisticated in vivo transgenic	between fiber intake and lower inflammation in the hypothalamus. To explore this
	mouse models and metabolic phenotyping approaches to elucidate	connection further, we are using two advanced technologies: PiP-seq scRNA for
	the central mechanisms underlying appetite regulation, energy	broadly analyzing individual hypothalamic cells and translating ribosome affinity
	expenditure, and glucose metabolism.	purification (TRAP) with microglial-specific Cre lines for specifically analyzing hypothalamic microglia. These tools will reveal how Western diet and FOS
		supplementation affect hypothalamic glial cells, potentially leading to new
		treatments for obesity-related disorders.